D-MATH	Analysis 3	ETH Zürich
Prof. M. Iacobelli	Serie 5	HS 2022

5.1. Weak solutions

Consider the transport equation

$$u_y + \frac{1}{2}\partial_x \left(u^2\right) = 0. \tag{1}$$

(a) Suppose that u is a classical solution to the previous transport equation. What equation does u^2 fulfil? Write it in the form

$$v_y + \partial_x \left(F(v) \right) = 0, \tag{2}$$

for some appropriate F.

(b) Consider the weak solution of Equation (1) given by

$$w(x,y) = \begin{cases} 3 & \text{if } x < \frac{3}{2}y - 1\\ 0 & \text{if } x > \frac{3}{2}y - 1. \end{cases}$$

Show that w^2 is not a weak solution of (2). Can you explain what is the problem?

5.2. Balance laws A generalization of the conservation law are the so called *balance laws*

$$\begin{cases} u_y + (f(u, x, y))_x = g(u, x, y), \\ u(x, 0) = h(x). \end{cases}$$

Recalling that here y > 0 represents the time variable, the above PDE models the flow of mass with concentration u(x, y) associated to a flux depending on the density, the time and the space. The term g represents the source term of the system.

(a) Consider the transport equation with source term: f(u, x, y) = cu, c > 0, and g(u, x, y) = 2y. Find a solution. Do the same for a general time dependent source term g = g(y).

(b) Consider the modified Burger's equation in which the flux increases linearly in time: $f(u, x, y) = \frac{u^2}{2}y$, $g \equiv 0$. Set the initial condition h(x) = 1 if x < 0, h(x) = 1 - x if $x \in [0, 1]$ and h(x) = 0 if x > 1. Find a solution. What is the main difference with the solution of the Burger's equation $(f = \frac{u^2}{2})$?¹

October 21, 2022

¹Try to sketch the characteristic curves

ETH Zürich	Analysis 3	D-MATH
HS 2022	Serie 5	Prof. M. Iacobelli

- **5.3.** Multiple choice Cross the correct answer(s).
- (a) The second order linear PDE given by

$$u_x + x^2 u_{xx} + 2x\sin(y)u_{xy} - \cos^2(y)u_{yy} + e^x = 0$$

is

 \bigcirc hyperbolic if $x \neq 0$ \bigcirc parabolic in $\{y = k\frac{\pi}{2} : k \in \mathbb{Z}\}$

 \bigcirc everywhere hyperbolic \bigcirc parabolic in x = 0

(b) Let $A = (a_{ij})$ be a (2×2) real matrix, and $f : \mathbb{R}^2 \to \mathbb{R}$ any smooth function. Then, the PDE ²

$$\operatorname{Trace}\left(A \cdot D^2 u\right) = f,$$

is

- \bigcirc elliptic if A is symmetric and \bigcirc hyperbolic if A is antisymmetric and $\det(A) > 0$ $a_{11} = a_{22} \neq 0$
- \bigcirc parabolic if A is symmetric and \bigcirc det(A) < 0
- \bigcirc hyperbolic if A is antisymmetric and $a_{11} = -a_{22} > 0$

(c) The same options as point (b), but with the PDE

$$\operatorname{div}\left(A\cdot\nabla u\right) = f.$$

(d) The following conservation law

$$\begin{cases} u_y + f(u)_x = 0, \\ u(x,0) = c > 0 \text{ for } x < 0 \text{ and } u(x,0) = 0 \text{ for } x \ge 0, \end{cases}$$

has a shock curve of slope equal to 8 if

$\bigcirc c = 2 \text{ and } f(u) = u^4$	$\bigcirc c = 2$ and $f(u) = -u^4$
$\bigcirc c = 1 \text{ and } f(u) = u^3$	$\bigcirc c = 1 \text{ and } f(u) = 2u^2 + 6u - 1$

²Recall the definition of the Hessian matrix $(D^2u)_{ij} = u_{x_ix_j}$. To start simple: what does it happen when A is the identity matrix?

October 21, 2022

Extra exercises

5.4. Weak solutions II

Consider the equation

$$e^{-u}u_x + u_y = 0,$$

with initial value u(x, 0) = 0 if x < 0, and $u(x, 0) = \alpha > 0$ if x > 0.

- (a) Find a weak solution for any $\alpha > 0$ with a single discontinuity for $y \ge 0$.
- (b) Show that such solution fulfils the entropy condition for all $\alpha > 0$.

5.5. Finding shock waves

Consider the transport equation

$$u_y + u^2 u_x = 0,$$

with initial condition u(x,0) = 1 for $x \le 0$, u(x,0) = 0 for $x \ge 1$, and

 $u(x,0) = \sqrt{1-x}$ for 0 < x < 1.

(a) Find the solution using the method of characteristics. Up to which time is the solution defined in a classical sense?

(b) Find a weak solution for all times $y \ge 0$.